Ремонтно отделочные работы в Ростове на дону
+7 (951) 51 88 797
Сайт строителя

Обжиг клинкера белого цемента.

Клинкер белого портландцемента обжигают во вращающихся печах, конструктивно мало отличающихся от печей, используемых для производства обычного портландцемента. Если вслед за обжигом отбеливают клинкер быстрым охлаждением в воде, то в концевой части вращающейся печи отсутствуют обычные устройства для охлаждения клинкера (рекуператоры или другие холодильники). Вместо этого в центральной части зоны спекания по окружности печи в корпусе имеется 6 лючков d 200 мм для разгрузки клинкера в водяной отбеливатель.

Объясняется это тем, что в этом случае клинкер необходимо выгружать из печи при высоких температурах и быстро охлаждать в воде. Зону спекания вращающейся печи футеруют тальковым или магнезитовым огнеупорным кирпичом. Использование хромомагнезитового кирпича недопустимо, так как возможна присадка окрашивающих окислов к клинкеру при обжиге.



Для обжига клинкера используют беззольпое топливо — мазут или природный газ. Температура обжига маложелезистого клинкера белого портландцемента высокая и достигает 1500— 1550°С. Физико-химические процессы, протекающие при нагревании сырьевой смеси, используемой для получения белого портландцемента, не отличаются от присущих серому портландцементу. Возможно лишь некоторое отличие физико-химических процессов, обусловленное характером вводимых в сырьевую смесь добавок и газовой средой в печи.

Влияние минерализующих и легирующих добавок на клинкерообразование.

Для облегчения обжига трудноспекаемой сырьевой смеси и улучшения свойств клинкера белого портландцемента необходимо вводить в сырьевую смесь некоторые добавки. Минерализующие добавки позволяют полностью завершить клинкерообразование. Механизм влияния этих добавок при обжиге клинкера белого портландцемента аналогичен их действию при обжиге обычного портландцемента, за исключением некоторых специфических особенностей, относящихся к процессу кристаллизации, которые будут рассмотрены ниже.

Как известно, минерализаторы интенсифицируют как твердофазовые процессы, так и процессы клинкерообразования, протекающие с участием жидкой фазы клинкера.

Микроструктура клинкеров с добавками минерализаторов.
рис. 3.1 Микроструктура клинкеров с добавками
минерализаторов. CaSo4.

Н. А. Торопов, С. Л. Голынко-Вольфсон, М. М. Сычев пришли к заключению, что во время протекания реакций в твердой фазе минерализатор вызывает глубокое нарушение кристаллических решеток реагирующих компонентов. Это объясняется полиморфными превращениями кристаллических модификаций кремнезема и образованием промежуточных соединений между некоторыми добавками и составляющими компонентами сырьевой смеси. Во время протекания реакций с участием жидкой фазы минерализаторы ускоряют клинкерообразование, так как снижается температура появления жидкой фазы, увеличивается ее количество и снижается вязкость.

Как указывают Н. А. Торопов и Йирку, минерализаторы действуют каталитически, ускоряя разрушение комплексных кремниевокислородных и алюминиевокислородных ионов типа

[Si4O10]4-,[SiO3]2-,[Si3O9]6-,[AlO4]5- и т.д.

Ввод в сырьевую смесь минерализаторов влияет не только на кинетику физико-химических процессов клинкерообразования, но и на фазовый состав клинкера и его структуру. Последнее обстоятельство необходимо учитывать, особенно при производстве белого портландцемента.

Микроструктура клинкера предопределяет один из основных показателей белого портландцемента его белизну. Современные представления о влиянии минерализаторов на процессы клинкерообразования основываются на достижениях кристаллохимии. Различная эффективность действия минерализаторов, как на процесс минералообразования, так и на характер кристаллизации, может быть объяснена, как указывают некоторые исследователи, различием их электростатических характеристик.

Микроструктура клинкеров с добавками минерализаторов.
рис. 3.2 Микроструктура клинкеров с добавками
минерализаторов. Na2SiF6.

Нашими исследованиями было установлено, что структура клинкера белого портландцемента при введении минерализатора зависит от электроотрицательности катионов и анионов, входящих в состав минерализатора и обусловливающих его интенсифицирующее действие. Так, при одном и том же анионе с увеличением электроотрицательности катионов в ряду.

K+->Na+->Li+->Mg2+->Be2+

Увеличивается размер кристаллов алита и белита. Еще в большей степени, чем у катионов, проявляется влияние анионов при одном и том же катионе на характер кристаллизации клинкера. Однако характер влияния анионов иной, чем катионов: с уменьшением электроотрицательности анионов в рядуSiF2-6 -> F- -> SO2-4 -> Cl-увеличивается размер кристаллов в клинкере (рис. 3).

Изучение тонкой структуры клинкера методом электронного парамагнитного резонанса (ЭПР) показало, что в зависимости от электроотрицательности катионов и анионов изменяется координация ионов Fe3+: анионы минерализаторов с большей электроотрицательностью SiF2-6,F- способствуют переходу Fe3+ в клинкере белого портландцемента из тетраэдрической координации в октаэдрическую, обладающую меньшей окрашивающей способностью.

Результаты исследований минерализующего влияния добавок на минералообразовакие и структуру клинкера показывают, что наилучшим является минерализатор, в который входит анион с наибольшей электроотрицательностью и катион с наименьшей электроотрицательностью. Для белого портландцемента таким минерализатором является кремнефтористый натрий, предопределяющий образование мелкокристаллической структуры, что способствует повышению белизны клинкера. Немаловажное значение в производстве белого портландцемента, как указывалось, имеет введение в сырьевую смесь легирующих добавок, улучшающих свойства белого портландцемента.

Изучение действия таких добавок, как окислы переходных элементов (Fe, Mn, Ti, Со и др.), показало, что они влияют не только на белизну портландцемента, но и на клинкерообразование. В частности, добавка двуокиси титана способствует интенсификации обжига (табл. 14). В этом случае добавка двуокиси титана и окислов других (переходных элементов интенсифицирует клинкерообразование, выполняя роль минерализатора.

Таблица 11. Усвоение извести при обжиге сырьевых смесей с добавками окислов переходных элементов.
Содержание окислов в %Количество свободной извести в % в образцах, обожженых при температуре в °C
Fe2O3Mn2O3TiO21150125013501450
0.2 - - 38.533.716.23.2
0.20.05 - 31.225.911.01.3
0.20.050.0530.124.010.40.9

Ввод добавки двуокиси титана в сырьевую смесь изменяет также характер кристаллизации клинкерных минералов, так как несколько увеличиваются их размеры.

Благодаря изменению структуры клинкера при вводе добавки двуокиси титана в значительной степени изменяются физико-механические свойства цемента, в частности, на 20—30% повышается его механическая прочность на сжатие.